Reaction Mechanisms of Metal-Metal-bonded Carbonyls. Part 19. ${ }^{1}$ Homolytic Fission of Bis[tetracarbonyl(triphenylphosphine)manganese]($\mathbf{M n} \mathbf{n}-\mathbf{M n}$) as a Path for Thermal Substitution ${ }^{2}$

By J. Paul Fawcett, Ronald A. Jackson, and Anthony Poë,* Erindale College and the Department of Chemistry, University of Toronto, Mississauga, Ontario L5L 1C6, Canada

The complex $\left[\left\{\mathrm{Mn}(\mathrm{CO})_{4}\left(\mathrm{PPh}_{3}\right)\right\}_{2}\right]$ reacts with $\mathrm{P}(\mathrm{OPh})_{3}$ in cyclohexane at $40-50{ }^{\circ} \mathrm{C}$ to form $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)\right.$ $\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}$]. A detailed study of the dependence of the rate on the concentrations of complex, $\mathrm{P}(\mathrm{OPh})_{3}$, and PPh_{3} shows that the kinetics are fully consistent with a mechanism involving initial, reversible, homolytic fission. This is followed by reversible bimolecular substitution of PPh_{3} in $\left[\mathrm{Mn}(\mathrm{CO})_{4}\left(\mathrm{PPh}_{3}\right)\right]$ by $\mathrm{P}(\mathrm{OPh})_{3}$ before final formation of the product by combination of two unlike radicals. This is the first clearly demonstrated example of a mechanism of this type operating in a simple thermal-substitution reaction.

Thermal reactions of $\left[\mathrm{M}_{2}(\mathrm{CO})_{10}\right]\left(\mathrm{M}_{2}=\mathrm{Mn}_{2},{ }^{3} \mathrm{MnRe},{ }^{3}\right.$ $\mathrm{Tc}_{2}{ }^{4}$ or $\mathrm{Re}_{2}{ }^{5}$) and $\left[\left\{\mathrm{Mn}(\mathrm{CO})_{4}\left[\mathrm{P}(\mathrm{OPh})_{3}\right]\right\}_{2}\right]^{6}$ with oxygen in decalin show kinetic behaviour indicative of reversible homolytic fission as the initial step that leads to eventual decomposition. The half-order dependence on [complex] of the thermal decomposition of the complexes [\{Mn$\left.\left.(\mathrm{CO})_{4}\left[\mathrm{P}(\mathrm{OPh})_{3}\right]\right\}_{2}\right]^{6}$ and $\left[\left\{\operatorname{Re}(\mathrm{CO})_{4}\left(\mathrm{PPh}_{3}\right)\right\}_{2}\right]^{7}$ in decalin under argon and in the presence of an excess of $\mathrm{P}(\mathrm{OPh})_{3}$ and PPh_{3}, respectively, provides similar evidence as does the formation ${ }^{1}$ of $c i s-\left[\mathrm{Mn}(\mathrm{CO})_{4}(\mathrm{~L}) \mathrm{Cl}\right]\left[\mathrm{L}=\mathrm{PPh}_{3}\right.$, PBu_{3}, or $\left.\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right]$ on reaction of $\left[\left\{\mathrm{Mn}(\mathrm{CO})_{4} \mathrm{~L}\right\}_{2}\right]$ with sym $-\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{4}$. Recently Benner and Balch ${ }^{8}$ have qualitatively demonstrated that thermal homolytic fission occurs in several such complexes by spin trapping of the radicals produced. Substitution reactions of some of these complexes have kinetic parameters very similar to, although not always identical with, those for reaction with O_{2} and it has been concluded that homolytic fission plays a major role in these substitutions. ${ }^{1}$ We present here detailed kinetic evidence showing that thermal-substitution reactions of $\left[\left\{\mathrm{Mn}(\mathrm{CO})_{4}\left(\mathrm{PPh}_{3}\right)\right\}_{2}\right]$ with $\mathrm{P}(\mathrm{OPh})_{3}$ or CO also proceed via initial homolytic fission. ${ }^{2}$ A partial study of these reactions was reported first by Wawersik and Basolo. ${ }^{9}$

EXPERIMENTAL AND RESULTS

The preparation of the complex $\left[\left\{\mathrm{Mn}(\mathrm{CO})_{4}\left(\mathrm{PPl}_{3}\right)\right\}_{2}\right]$, the chemicals used, and the kinetic procedures followed have all been described elsewhere. ${ }^{10}$ Certified Grade A.C.S. cyclohexane (Fisher Scientific Co.) was stored over molecular sieves and used without further purification. The complex showed bands in the i.r. at 1987 w and $1963 \mathrm{~cm}^{-1}$ ($\varepsilon 22 \times 10^{3} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$), and has an absorption maximum at $376 \mathrm{~nm}\left(\varepsilon 3.2 \times 10^{4} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$ in its electronic spectrum together with a shoulder at 440 nm . These data are in good agreement with those published elsewhere. ${ }^{1,11}$ Reaction with an excess of $\mathrm{P}(\mathrm{OPh})_{3}$ at $50{ }^{\circ} \mathrm{C}$ in cyclohexane was accompanied by growth of i.r.
${ }^{1}$ Part 18, R. A. Jackson and A. J. Poe, Inorg. Chem., 1978, 17, in the press.
${ }_{2}$ J. P. Fawcett, R. A. Jackson, and A. J. Poë, J.C.S. Chem. Comm., 1975, 733.
${ }^{3}$ J. P. Fawcett, A. J. Poë, and K. R. Sharma, J. Amer. Chem. Soc., 1976, 98, 1401.
${ }^{\prime}$ 'J. J. Fawcett and A. J. Poë, J.C.S. Dalton, 1976, 2039.
${ }^{5}$ A. J. Poë and K. R. Sharma, unpublished work.
${ }^{6}$ D. M. Chowdhury, A. J. Poë, and K. R. Sharma, J.C.S. Dalton, 1977, 2352.
bands at $1988 \mathrm{w}, 1974 \mathrm{~s}$, and $1928 \mathrm{w} \mathrm{cm}^{-1}$, and by corresponding loss of the band at $1963 \mathrm{~cm}^{-1}$ due to the reactant complex. The product had an absorption maximum at $367 \mathrm{~nm}\left(\varepsilon 2 \times 10^{4} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$ in its electronic spectrum, with a shoulder at ca. 425 nm . An isolated sample of $\left[\left\{\mathrm{Mn}(\mathrm{CO})_{4}\left[\mathrm{P}(\mathrm{OPh})_{3}\right]\right\}_{2}\right]$ had i.r. absorption bands in cyclohexane at 2004 w and $1983 \mathrm{~cm}^{-1}\left(\varepsilon 16 \times 10^{3} \mathrm{dm}^{3} \mathrm{~mol}^{-1}\right.$ cm^{-1}) and an electronic-absorption band at 355 nm with a shoulder at $408 \mathrm{~nm} .{ }^{6}$ When the product of the reaction of $\left[\left\{\mathrm{Mn}(\mathrm{CO})_{4}\left(\mathrm{PPh}_{3}\right)\right\}_{2}\right]\left(\right.$ ca. $\left.4 \times 10^{-4} \mathrm{~mol} \mathrm{dm}{ }^{-3}\right)$ with $\mathrm{P}(\mathrm{OPh})_{3}$ ($0.10 \mathrm{~mol} \mathrm{dm}{ }^{-3}$) in cyclohexane at $50{ }^{\circ} \mathrm{C}$ was heated to $75{ }^{\circ} \mathrm{C}$ the band at $1974 \mathrm{~cm}^{-1}$ slowly disappeared, to be replaced by the band at $1983 \mathrm{~cm}^{-1}$ characteristic of $\left[\left\{\mathrm{Mn}(\mathrm{CO})_{4}\left[\mathrm{P}(\mathrm{OPh})_{3}\right]\right\}_{2}\right]$. The final yield of this complex, however, was only ca. 20%. Reaction of the bis(phosphine) complex with $0.05 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{P}(\mathrm{OPh})_{3}$ at $50{ }^{\circ} \mathrm{C}$ under argon in a silica cell was followed by repetitive scanning in a Perkin-Elmer 402 recording spectrophotometer. Reasonable isosbestic points were observed at $c a .350$ and $c a$. 425 nm which persisted up to ca. 50% completion of reaction, after which there was a general decrease in absorbance. The decrease was probably due to leakage of O_{2} into the cell which could not be as tightly sealed as the Schlenk tubes. These results show that the reaction of $\left[\left\{\mathrm{Mn}(\mathrm{CO})_{4}\left(\mathrm{PPh}_{3}\right)\right\}_{2}\right]$ with $\mathrm{P}(\mathrm{OPh})_{3}$ leads first to the formation of the mixed complex $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}\right]$ for which the molar absorption coefficient at $1974 \mathrm{~cm}^{-1}$ was estimated to be $12 \times 10^{3} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$.

The kinetics of the reaction were followed by monitoring the decreasing intensity of the band at $1963 \mathrm{~cm}^{-1}$. The molar absorption coefficients of $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}\right]$, $\mathrm{P}(\mathrm{OPh})_{3}$, and PPh_{3} at this frequency are $1.9 \times 10^{3}, 2.3$, and $7.2 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$, respectively, and the absorbances, A_{∞}, of the reaction mixtures at completion of reaction were calculated from these values and the known concentrations. In all cases the reactions went to completion. In the absence of free PPh_{3}, first-order rate plots were found to be linear for ca. 2 half-lives when $\left[\mathrm{P}(\mathrm{OPh})_{3}\right]=$ $0.190 \mathrm{~mol} \mathrm{dm}^{-3}$ and the initial concentration of complex was $7.1 \times 10^{-5}-36.5 \times 10^{-5} \mathrm{~mol} \mathrm{dm}{ }^{-3}$. The first-order rate constants were independent of complex concentration. When $\left[\mathrm{P}(\mathrm{OPh})_{3}\right]=0.010 \mathrm{~mol} \mathrm{dm}^{-3}$, however, the first-order
${ }^{7}$ D. G. DeWit, J. P. Fawcett, and A. J. Poë, J.C.S. Dalton, 1976, 528.
${ }^{8}$ L. S. Benner and A. L. Balch, J. Organometallic Chem., 1977, 134, 121.
${ }_{9}^{9}$ H. Wawersik and F. Basolo, Inorg. Chim. Acta, 1969, 3, 113.
10 J. P. Fawcett and A. J. Poë, J.C.S. Dalton, 1977, 1302.
${ }^{11}$ R. A. Levenson and H. B. Gray, J. Amer. Chem. Soc., 1975, 97, 6042.
rate plots showed pronounced curvature, the gradients increasing with time. Apparent first-order rate constants, $k_{\text {obs. }}$, can be defined by the equation $R=k_{\text {obs. }} c$ where R represents the rate at a particular concentration, c, of

Table 1
Dependence on [complex] of the apparent first-order rate constants for reaction of $\mathrm{P}(\mathrm{OPh})_{3}$ with $\left[\left\{\mathrm{Mn}(\mathrm{CO})_{4}{ }^{-}\right.\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\right\}_{2}$] in cyclohexane in the absence of PPh_{3}

$$
\frac{10^{6} c^{a}}{\mathrm{~mol}^{-3} \mathrm{dm}^{-3}} \quad \frac{10^{6} k_{\text {obs. }}}{\mathrm{s}^{-1}} \quad \frac{10^{6} k_{\text {calc. } .}}{\mathrm{s}^{-1}} \quad \frac{\Delta^{c}}{\%}
$$

(a) $39.9{ }^{\circ} \mathrm{C},\left[\mathrm{P}(\mathrm{OPh})_{3}\right]=0.010 \mathrm{~mol} \mathrm{dm}^{-3}$

16.4	24.9	25.3	-1.7
21.8	22.9	23.2	-1.4
25.3	24.6	21.9	11.1
29.0	22.3	21.2	5.2
46.6	17.3	18.0	-3.8
47.5	18.0	17.9	0.7
47.9	18.8	17.8	5.7
50.2	16.7	17.5	-4.6
99.7	12.3	13.4	-8.2
113	10.6	12.7	-16.7
134	12.3	11.8	3.8
160	10.8	11.0	-1.7
184	10.3	10.4	-1.0
189	10.3	10.3	0
196	9.01	10.1	-10.9
240	8.52	9.25	-7.9
329	8.39	8.02	4.6
360	7.80	7.72	1.0

(b) $38.0^{\circ} \mathrm{C},\left[\mathrm{P}(\mathrm{OPh})_{3}\right]=0.190 \mathrm{~mol} \mathrm{dm}^{-3}$
$\left.\begin{array}{ll}70.7 & 315 \\ 162 & 328 \\ 211 & 325 \\ 261 & 320 \\ 365 & 339\end{array}\right\} \quad 10^{6} k_{\text {obs }}=325 \pm 6$
${ }^{a}$ Concentration of $\left[\left\{\mathrm{Mn}(\mathrm{CO})_{4}\left(\mathrm{PPh}_{3}\right)\right\}_{2}\right] .{ }^{b}$ By using $k_{1}=$ $4.20 \times 10^{-4} \mathrm{~s}^{-1}$ and $k_{-1}{ }^{\sharp} / k_{2}=126 \mathrm{~mol}^{\ddagger} \mathrm{dm}^{-\frac{3}{2}} \mathrm{~s}^{\sharp} .{ }^{c} 100\left(k_{\text {obs. }}-\right.$ $k_{\text {calc. }}$) $/ k_{\text {calce. }}$.
complex. A zero subscript can be added to R to give R_{0}, the rate in the absence of added PPh_{3}. We chose, for convenience, to measure c at the beginning of each reaction from the initial absorbance, the known molar absorption

Table 2
Dependence on $\left[\mathrm{P}(\mathrm{OPh})_{3}\right]$ of the apparent first-order rate constants in the absence of PPh_{3} at $49.9{ }^{\circ} \mathrm{C}$

$10^{3}\left[\mathrm{P}(\mathrm{OPh})_{3}\right]$	$10^{6} \mathrm{c}$	$\underline{10^{5} k_{\text {obs }}}$	$\underline{10^{5} k_{\text {calc. }}{ }^{*}}$	Δ
$\mathrm{mol} \mathrm{dm}^{-3}$	$\overline{\mathrm{moldm}}{ }^{-3}$	s^{-1}	s^{-1}	\%
10.4	300	38.0	37.9	0.3
12.9	274	51.2	47.4	8.0
15.4	265	57.6	55.7	3.4
20.4	274	66.5	68.6	-3.1
30.0	309	83.8	86.6	-3.2
48.5	315	113	115	-1.7
84.8	328	139	143	-2.8
173	294	169	167	1.2

coefficient, and the path length of the cell. The corresponding values of $k_{\text {obs. }}$ (and, therefore, of R_{0} or R) were obtained from the initial gradients of the first-order plots.

Values of $k_{\text {obs. }}$ showed a strong dependence on c at $\left[\mathrm{P}(\mathrm{OPh})_{3}\right]=0.010 \mathrm{~mol} \mathrm{dm}{ }^{-3},\left[\mathrm{PPh}_{3}\right]=0 \mathrm{~mol} \mathrm{dm}{ }^{-3}$, and $c=1.64 \times 10^{-5}-36.0 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$. A plot of $\log R_{0}$ against $\log c$ was curved (Figure 1, ref. 2) with a gradient significantly less than unity even at low values of c. Rates
were also measured for $c=c a .3 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$ and various concentrations of $\mathrm{P}(\mathrm{OPh})_{3}$ and PPh_{3}. The values of $k_{\text {ous. }}$ were found to increase to a limiting value with increasing $\left[\mathrm{P}(\mathrm{OPh})_{3}\right]$ (as was observed earlier), ${ }^{9}$ and to decrease with increasing $\left[\mathrm{PPh}_{3}\right]$. All the kinetic data are shown in Tables 1-3.

Table 3
Dependence on $\left[\mathrm{PPh}_{3}\right]$ and $\left[\mathrm{P}(\mathrm{OPh})_{3}\right]$ of the apparent first-order rate constants at $49.9^{\circ} \mathrm{C}$

$\frac{10^{3}\left[\mathrm{PPh}_{3}\right]}{\mathrm{moldm}^{-3}}$	$\frac{10^{3}\left[\mathrm{P}(\mathrm{OPh})_{3}\right]}{\mathrm{mol} \mathrm{dm}^{-3}}$	$\frac{10^{6} c}{\mathrm{~mol} \mathrm{dm}^{-3}}$	$\frac{10^{4} k_{\text {obs. }}}{\mathrm{s}^{-1}}$	$\frac{10^{5} k_{\text {calc. }}}{\mathrm{s}^{-1}}$	$\frac{\Delta}{\%}$
1.28	18.0	228	57.0	66.2	-14
5.01	18.0	282	53.2	56.9	-6.5
10.0	18.0	387	47.4	46.9	1.1
22.2	18.0	296	42.3	42.8	-1.2
42.4	18.0	296	30.8	33.9	-9.1
95.5	18.2	330	20.8	22.0	-5.5
31.2	9.24	276	22.1	21.7	1.8
31.2	10.1	219	24.8	24.9	-0.4
31.2	14.2	286	32.4	31.6	2.5
31.2	18.2	260	41.6	39.6	5.1
32.4	28.8	272	61.3	55.7	10.1
31.2	45.6	246	82.6	78.7	5.0
31.2	50.7	182	90.7	87.5	3.7
31.6	100	254	111	116	-4.3
31.2	102	168	117	121	-3.3
31.1	156	330	143	133	7.5

* By using $k_{1}=175 \times 10^{-5} \mathrm{~s}^{-1}, k_{-1}{ }^{\frac{1}{2}} / k_{2}=57 \mathrm{~mol}^{1} \mathrm{dm}^{-\frac{2}{2}} \mathrm{~s}^{\frac{1}{2}}$, and $k_{-1} k_{-2} / k_{2} k_{3}=0.9$.

DISCUSSION

The curvature and less-than-unit gradient of the plot of $\log R_{0}$ against $\log c$ when $\left[\mathrm{P}(\mathrm{OPh})_{3}\right]=0.010 \mathrm{~mol} \mathrm{dm}^{-3}$ is characteristic ${ }^{\mathbf{3 - 6 , 1 2}}$ of initial reversible fission of the complex into two fragments, further reaction of the fragments competing with their recombination. The rate of this further reaction must, in this case, be dependent on $\left[\mathrm{P}(\mathrm{OPh})_{3}\right]$ since the values of $k_{\text {obs. }}$ increase with $\left[\mathrm{P}(\mathrm{OPh})_{3}\right]$ to a limiting value. Under this limiting condition the reaction is strictly first order in [complex] and the rate-determining step is the fission process, no recombination of fragments occurring. It is most unlikely that the fission process is heterolytic since the ions formed would be tightly bound in an ion pair in such a non-polar solvent as cyclohexane. The reformation of the binuclear complex would then be first order in [ion pair] and the overall kinetics would remain first order in [complex] at all concentrations. An unsymmetrical distribution of ligands between the two fragments can also be concluded to be most unlikely on energetic grounds, one fragment being co-ordinatively oversaturated and the other unsaturated. Since the product of the reaction corresponds to substitution of only one PPh_{3} ligand, the qualitative nature of the data therefore suggests the reaction scheme shown in equations (1)-(3). The reversibility of reaction (2) is shown by the retarding effect of free PPh_{3}, and the irreversibility of (3) by the fact that the reaction goes to completion under all conditions used.
In the absence of free PPh_{3}, (2) can be considered irreversible and rate equations (8) and (9) can be derived

12 J. P. Fawcett, A. J. Poë, and M. V. Twigg, J. Organometallic Chem., 1973, 51, C17.
as follows by using the steady-state approximation. R_{1} represents the rate of reaction (1) in the forward direction, and R_{0} the corresponding observed rate.

$$
\begin{align*}
& {\left[\left\{\mathrm{Mn}(\mathrm{CO})_{4}\left(\mathrm{PPh}_{3}\right)\right\}_{2}\right] \stackrel{k_{-1}}{k_{2}} 2\left[\mathrm{Mn}(\mathrm{CO})_{4}\left(\mathrm{PPh}_{3}\right)\right]} \tag{1}\\
& {\left[\mathrm{Mn}(\mathrm{CO})_{4}\left(\mathrm{PPh}_{3}\right)\right]+\mathrm{P}(\mathrm{OPh})_{3} \xlongequal[{\underset{k}{k-1}}_{k_{2}}^{k_{2}}]{2}} \\
& {\left[\mathrm{Mn}(\mathrm{CO})_{4}\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}\right]+\mathrm{PPh}_{3}} \tag{2}\\
& {\left[\mathrm{Mn}(\mathrm{CO})_{4}\left(\mathrm{PPh}_{3}\right)\right]+\underset{\left[\mathrm{Mn}_{2}(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}\right]}{\left[\mathrm{Mn}(\mathrm{CO})_{4}\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}\right.}} \tag{3}
\end{align*}
$$

$\mathrm{M}=\mathrm{Mn}(\mathrm{CO})_{4}, \mathrm{~L}=\mathrm{PPh}_{3}, \mathrm{~L}^{\prime}=\mathrm{P}(\mathrm{OPh})_{3}$, and $[\mathrm{ML}]_{0}$ and $\left[\mathrm{ML}^{\prime}\right]_{0}$ represent the steady-state concentrations of these intermediates. The steady state is assumed to be set up very rapidly, i.e. k_{-1} and k_{2} are much greater than k_{1}. From (4) and (6) we obtain (7), and from (4) and (7) we obtain (8) or (9). A plot of $k_{\text {obs. }}$ against

$$
\begin{gather*}
R_{0}=k_{1}\left[(\mathrm{ML})_{2}\right]-k_{-1}\left[\mathrm{ML}_{]_{0}}{ }^{2}=k_{3}[\mathrm{ML}]_{0}\left[\mathrm{ML}^{\prime}\right]_{0}\right. \tag{4}\\
2 k_{1}\left[(\mathrm{ML})_{2}\right]-2 k_{-1}[\mathrm{ML}]_{0}^{2} \\
k_{2}[\mathrm{ML}]_{0}\left[\mathrm{~L}^{\prime}\right]-k_{3}\left[\mathrm{ML}_{0}\left[\mathrm{ML}^{\prime}\right]_{0}=0\right. \tag{5}\\
k_{2}[\mathrm{ML}]_{0}\left[\mathrm{~L}^{\prime}\right]-k_{3}[\mathrm{ML}]_{0}\left[\mathrm{ML}^{\prime}\right]_{0}=0 \tag{6}\\
{[\mathrm{ML}]_{0}=R_{0} / k_{2}\left[\mathrm{~L}^{\prime}\right]} \tag{7}\\
\left(R_{1}-R_{0}\right)^{2}\left[\mathrm{~L}^{\prime}\right] / R_{0}=k_{-1}{ }^{4} / k_{2} \tag{8}\\
R_{0} / c=k_{\mathrm{obs} .}=k_{1}-\left(k_{-1} / k_{2}^{2}\right)\left(R_{0}^{2} / c\left[\mathrm{~L}^{\prime}\right]^{2}\right) \tag{9}
\end{gather*}
$$

$R_{0}{ }^{2} / c\left[\mathrm{P}(\mathrm{OPh})_{3}\right]^{2}$ for reaction with $\left[\mathrm{P}(\mathrm{OPh})_{3}\right]$ at $49.9{ }^{\circ} \mathrm{C}$ (Table 2) is shown in Figure 1. The deviations of the

Figure 1 Dependence of $k_{\text {obs. }}$ on $\left[\mathrm{P}(\mathrm{OPh})_{3}\right.$] for reaction at $49.9{ }^{\circ} \mathrm{C},\left[\mathrm{PPh}_{3}\right]=0$, and $c=3 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$
values of $k_{\text {obss. }}$ from those calculated with parameters given by the line drawn in the Figure correspond to a standard deviation, $\sigma\left(k_{\text {obs. }}.\right)$, for each individual measure-
ment of $k_{\text {obs. }}$ of 5.5%, after allowing for the number of degrees of freedom. The uncertainties shown for each point in the Figure correspond to this standard deviation. The values of k_{1} and $k_{-1} / k_{2}{ }^{2}$ obtained from the graph are

Figure 2 Dependence of rate on [complex] for reaction with $0.010 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{P}(\mathrm{OPh})_{3}$ at $39.9{ }^{\circ} \mathrm{C},\left[\mathrm{PPh}_{3}\right]=0$, and $c=$ $2 \times 10^{-4}-36 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$
$(175 \pm 8) \times 10^{-5} \mathrm{~s}^{-1}$ and $(35 \pm 7) \times 10^{2} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}$, respectively. The uncertainties are approximate estimates of the standard deviations made by drawing two reasonable extreme linear plots and assuming that the parameters obtained from them are reasonable estimates of the 95% confidence limits. This value of k_{1} at $49.9{ }^{\circ} \mathrm{C}$ is in excellent agreement with the value $(175 \pm 2) \times 10^{-5} \mathrm{~s}^{-1}$ estimated from the activation parameters for reaction of the complex with carbon monoxide. ${ }^{10}$ The value $k_{1}=(325 \pm 6) \times 10^{-6} \mathrm{~s}^{-1}$ obtained from the reaction with $0.190 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{P}(\mathrm{OPh})_{3}$ at $38.0^{\circ} \mathrm{C}$ (Table 1) is also in excellent agreement with the value $(317 \pm 7) \times 10^{-6} \mathrm{~s}^{-1}$ estimated for reaction with carbon monoxide at that temperature. ${ }^{9}$ The limiting first-order rate constants for reaction with $\mathrm{P}(\mathrm{OPh})_{3}$ and CO are therefore identical over this temperature range and both reactions must proceed by the same rate-determining step. A value of $k_{1}=$ $(420 \pm 9) \times 10^{-6} \mathrm{~s}^{-1}$ for reaction with CO at $39.9^{\circ} \mathrm{C}$ can be calculated from the activation parameters ${ }^{10}$ and this can be used to calculate values of R_{1} for reaction with $\mathrm{P}(\mathrm{OPh})_{3}$ at that temperature. It is, therefore, possible to calculate values of $\left(R_{1}-R_{0}\right)^{2}\left[\mathrm{P}(\mathrm{OPh})_{3}\right]$ for reaction with $0.010 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{P}(\mathrm{OPh})_{3}$ at $39.9{ }^{\circ} \mathrm{C}$ (Table 1) and these values are plotted against corresponding values of R_{0} in Figure 2. A straight line passing through the origin is easily drawn through the points in accordance
with equation (8). The deviations of R_{0} from the line drawn lead to a value of $\pm 7.6 \%$ for $\sigma\left(k_{\text {obs. }}\right)$ and the uncertainties indicated for the points are standard deviations based on this value and on the uncertainty for k_{1}. The gradient of the plot leads to a value of 126 ± 7 $\mathrm{mol}^{\frac{1}{2}} \mathrm{dm}^{-\frac{3}{2}} \mathrm{~s}^{\frac{1}{4}}$ for $k_{-1}{ }^{\frac{1}{2}} / k_{2}$ at $39.9^{\circ} \mathrm{C}$, the uncertainty being an approximate standard deviation estimated as before.

For reaction in the presence of free PPh_{3}, rate equation (13) can be derived as follows. [ML] and [ML'] represent the steady-state concentrations of these intermediates under these conditions and R is the observed

The value for the enthalpy difference is much greater than the $15 \mathrm{~kJ} \mathrm{~mol}^{-1}$ found ${ }^{3}$ from the reaction of $\left[\mathrm{Mn}(\mathrm{CO})_{10}\right]$ with O_{2}. Although the recombination of two $\left[\mathrm{Mn}(\mathrm{CO})_{4}\left(\mathrm{PPh}_{3}\right)\right]$ radicals would be expected to have a somewhat higher activation enthalpy than recombination of two $\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]$ radicals, bimolecular substitution of PPh_{3} in $\left[\mathrm{Mn}(\mathrm{CO})_{4}\left(\mathrm{PPh}_{3}\right)\right]$ by $\mathrm{P}(\mathrm{OPh})_{3}$ would have a very much higher value of ΔH^{\ddagger} than would reaction of O_{2} with $\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]$.

The fact that $\mathrm{P}(\mathrm{OPh})_{3}$ displaces PPh_{3} from $\left[\mathrm{Mn}(\mathrm{CO})_{4}{ }^{-}\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\right]$ by a bimolecular mechanism, rather than by

Table 4

Rate parameters for the mechanism shown in equations (1)-(3)						
$\frac{\theta_{c}}{{ }^{\circ} \mathrm{C}}$	$\frac{10^{5} c}{\mathrm{~mol} \mathrm{dm}}{ }^{-3}$	$\frac{10^{3}\left[\mathrm{P}(\mathrm{OPh})_{3}\right]}{\mathrm{mol} \mathrm{dm}^{-3}}$	$\frac{10^{3}\left[\mathrm{PPh}_{3}\right]}{\mathrm{mol} \mathrm{dm}^{-3}}$	$\frac{10^{5} k_{1}}{\mathrm{~s}^{-1}}$	$\frac{10^{-2}\left(k_{-1} / k_{2}{ }^{2}\right)}{\mathrm{mol}_{\mathrm{dm}^{-3} \mathrm{~s}}}$	$\frac{k_{-1} k_{-2}}{k_{2} k_{3}}$
38.0	$7-37$	190	0	32.5 ± 0.6		
39.9	2-36	10	0	42.0 ± 0.9 *	159 ± 10	
49.9	27-32	10-173	0	175 ± 8	35 ± 7	
	18-39	9-156	1-96	$175 \pm 2^{*}$	33 ± 10	0.9 ± 0.1

rate. A plot of $\left(R_{1}-R\right)^{\frac{1}{2}}\left[\mathrm{P}(\mathrm{OPh})_{3}\right] / R$ against $\left[\mathrm{PPh}_{\mathbf{3}}\right] /$ $\left(R_{1}-R\right)^{\frac{1}{2}}$ is shown in Figure 3. Values of R were

$$
\begin{gather*}
R=k_{1}\left[(\mathrm{ML})_{2}\right]-k_{-1}[\mathrm{ML}]^{2} \tag{10}\\
2 k_{1}\left[(\mathrm{ML})_{2}\right]-2 k_{-1}\left[\mathrm{ML}^{2}-k_{2}[\mathrm{ML}]\left[\mathrm{L}^{\prime}\right]+\right. \\
k_{-2}\left[\mathrm{ML}^{\prime}\right][\mathrm{L}]-k_{3}[\mathrm{ML}]\left[\mathrm{ML}^{\prime}\right]=0 \tag{11}\\
k_{2}[\mathrm{ML}]\left[\mathrm{L}^{\prime}\right]-k_{-2}\left[\mathrm{ML}^{\prime}\right][\mathrm{L}]-k_{3}[\mathrm{ML}]\left[\mathrm{ML}^{\prime}\right]=0 \tag{12}
\end{gather*}
$$

whence
$[\mathrm{ML}]=\left(R_{1}-R\right)^{\frac{1}{2}} / k_{-1}{ }^{\frac{1}{2}}$
$\left[\mathrm{ML}^{\prime}\right]=k_{2}[\mathrm{ML}]\left[\mathrm{L}^{\prime}\right] /\left(k_{-2}[\mathrm{~L}]+k_{3}[\mathrm{ML}]\right)$
and
$\left(R_{\mathbf{1}}-R\right)^{\frac{1}{2}}\left[\mathrm{~L}^{\prime}\right] / R=$

$$
\begin{equation*}
\left(k_{-1} / k_{2}\right)+\left(k_{-1} k_{-2} / k_{2} k_{3}\right)[\mathrm{L}] /\left(R_{1}-R\right)^{\ddagger} \tag{13}
\end{equation*}
$$

obtained from Table 3 and k_{-1} was taken as $(175 \pm 2) \times$ $10^{-5} \mathrm{~s}^{-1}$ (see above). The uncertainties in the points are approximate standard deviations based on a value $\sigma\left(k_{\text {obs. }}\right)=7.2 \%$ estimated from the differences between $k_{\text {obs. }}$ and $k_{\text {calc. }}$ \{Significant uncertainties along the horizontal axis occur only in those cases where $\left[\mathrm{PPh}_{3}\right]=$ $c a .0 .03 \mathrm{~mol} \mathrm{dm}^{-3}$ and $\left[\mathrm{P}(\mathrm{OPh})_{3}\right]$ is high so that R is approaching quite close to R_{1} and $\left(R_{1}-R\right)^{\frac{1}{2}}$ becomes quite uncertain.\} Values of $k_{\text {calc. }}$ were derived from the parameters $k_{-1}{ }^{\frac{1}{2}} / k_{2}=57 \pm 7 \mathrm{~mol}^{\frac{1}{2}} \mathrm{dm}^{-\frac{3}{2}} \mathrm{~s}^{\frac{1}{2}}$ and $k_{-1} k_{-2} /$ $k_{2} k_{3}=0.9 \pm 0.1$ obtained from the intercept and gradient, respectively, of the linear plot in Figure 3. The uncertainties in these parameters are approximate standard deviations derived as before by drawing reasonable extreme plots. The value of $k_{-1} \frac{1}{1} / k_{2}$ from these results is in excellent agreement with the value $59 \pm 6 \mathrm{~mol}^{\frac{1}{2}} \mathrm{dm}^{-\frac{3}{2}} \mathrm{~s}^{\frac{1}{2}}$ found above from the data in Table 2. All the data are therefore qualitatively and quantitatively consistent with each other and with the proposed mechanism (Table 4).

The values of $k_{-1}{ }^{\frac{1}{2}} / k_{2}$ at 39.9 and $49.9{ }^{\circ} \mathrm{C}$ enable a value of $129 \pm 10 \mathrm{~kJ} \mathrm{~mol}^{-1}$ to be estimated for $2 \Delta H^{\ddagger}{ }_{2}$ $\Delta H^{\ddagger}{ }_{-1}$, and $87 \pm 32 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ for $2 \Delta S_{2}^{\ddagger}-\Delta S^{\ddagger}{ }_{-1}$.
rate-determining PPh_{3} dissociation, is not surprising. The formation of a six-co-ordinate 19 -electron transition state during a bimolecular reaction involves the

Figure 3 Dependence of kinetic behaviour on $\left[\mathrm{PPh}_{3}\right]$ and $\left[\mathrm{P}(\mathrm{OPh})_{3}\right]$ at $c=1.7 \times 10^{-4}-3.9 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$
partial formation of an additional ' half-bond ' whereas the dissociative mechanism would involve partial breaking of a whole bond. It is, therefore, intermediate between reaction of an 18 -electron octahedral complex (where bimolecular reactions are known although not very common) and a 16 -electron planar four-co-ordinate complex (where bimolecular reactions are the rule). The fact that the limiting rate is reached at much lower values ${ }^{10}$ of $[\mathrm{CO}]$ than of $\left[\mathrm{P}(\mathrm{OPh})_{3}\right]$ implies that bimolecular attack by CO is much more favoured. Attack by $\mathrm{PBu}_{3}{ }^{9}$ can be inferred in this way to be intermediate in rate between that by CO and $\mathrm{P}(\mathrm{OPh})_{3}$ and this
sequence is explicable in terms of the conflicting effects of basicity and size.

The kinetic behaviour is also consistent with the observation that $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}\right]$ is the only product observed. If reaction (3) were replaced by (14)

$$
\begin{gather*}
2\left[\mathrm{Mn}(\mathrm{CO})_{4} \mathrm{~L}^{\prime}\right] \xrightarrow{k_{14}}\left[\left\{\mathrm{Mn}(\mathrm{CO})_{4} \mathrm{~L}^{\prime}\right\}_{2}\right] \tag{14}\\
\left(R_{1}-R\right)^{\frac{1}{t}}\left[\mathrm{~L}^{\prime}\right] / R= \\
2\left(k_{-1}{ }^{\frac{1}{4}} / k_{2}\right)+\left(k_{-\mathbf{1}^{\frac{1}{2}}} k_{-2} / k_{2^{2}} k_{14^{\frac{1}{2}}}\right)[\mathrm{L}] / R^{\frac{1}{4}} \tag{15}
\end{gather*}
$$

rate equation (15) applies. The kinetic form of behaviour will be the same as before when $\left[\mathrm{PPh}_{3}\right]=0$, but when free PPh_{3} is present it should be different. This difference is not pronounced when $\left[\mathrm{P}(\mathrm{OPh})_{3}\right]=$ constant and $\left[\mathrm{PPh}_{3}\right]$ is varied, the term $\left[\mathrm{PPh}_{3}\right] / R^{\frac{1}{2}}$ merely increasing more rapidly with $\left[\mathrm{PPh}_{3}\right]$ than $\left[\mathrm{PPh}_{3}\right] /\left(R_{1}-R\right)^{\frac{1}{2}}$. However, when $\left[\mathrm{PPh}_{3}\right]=\mathrm{constant}$ and $\left[\mathrm{P}(\mathrm{OPh})_{3}\right]$ is varied $\left[\mathrm{PPh}_{3}\right] / R^{\frac{1}{d}}$ decreases with increasing $\left[\mathrm{P}(\mathrm{OPh})_{3}\right]$ whereas $\left[\mathrm{PPh}_{3}\right] /\left(R_{1}-R\right)^{\frac{1}{2}}$ increases with $\left[\mathrm{P}(\mathrm{OPh})_{3}\right]$. A negative (and, therefore, meaningless) value is thus found for ($k_{-1}{ }^{\frac{1}{2}} k_{-2}\left(k_{2} k_{14}{ }^{\frac{1}{2}}\right)$ and the intercept is more than twice the value predicted from the data in the absence of added PPh_{3}.

The preferential combination of unlike radicals is also
known in other systems. Thus $\left[\left\{\operatorname{Re}(\mathrm{CO})_{4}\left(\mathrm{PPh}_{3}\right)\right\}_{2}\right]$ is also believed to react via initial reversible homolytic fission ${ }^{7}$ and reaction with $\mathrm{P}(\mathrm{OPh})_{3}$ yields $\left[\mathrm{Re}_{2}(\mathrm{CO})_{8^{-}}\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}\right]$ as the primary product. In this case, however, the limiting rate is reached at all concentrations of $\mathrm{P}(\mathrm{OPh})_{3}$ used (provided $\left[\mathrm{PPh}_{3}\right]=0$) and R_{2} must be $>R_{-1}$. A similar preference for reaction between the unlike radicals $\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]$ and $\left[\operatorname{Re}(\mathrm{CO})_{5}\right]$ compared with reaction between like radicals has also been shown in the thermal decomposition of $[\mathrm{MnRe}-$ $(\mathrm{CO})_{10}{ }^{\mathbf{3}}$ and is also suggested ${ }^{\mathbf{3}}$ by photochemical studies. ${ }^{13}$ Substitution reactions of CO with $\left[\left\{\mathrm{M}(\mathrm{CO})_{4}{ }^{-}\right.\right.$ $\left.\left.\left(\mathrm{PPh}_{3}\right)\right\}_{2}\right] \quad(\mathrm{M}=\mathrm{Tc}$ or Re$)$ and $\left[\left\{\mathrm{Mn}(\mathrm{CO})_{4} \mathrm{~L}\right\}_{2}\right] \quad[\mathrm{L}=$ $\mathrm{P}(\mathrm{OPh})_{3}$ or $\left.\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right]$ are also believed ${ }^{1,4,6,7}$ to react via homolytic fission and the initial product in each case is the nonacarbonyl. This shows that the final step is the preferential combination of $\left[\mathrm{M}(\mathrm{CO})_{5}\right]$ and $\left[\mathrm{M}(\mathrm{CO})_{4} \mathrm{~L}\right]$ radicals. The cause of this selectivity is not yet clear.

We thank Erindale College and the National Research Council, Ottawa, for support, and the National Research Council for the award of a fellowship (to R. A. J.).
[7/1743 Received, 3rd October, 1977]
${ }^{13}$ M. S. Wrighton and D. S. Ginley, J. Amer. Chem. Soc., 1975. 97, 2065.

